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Rigorous Electromagnetic Modeling of Radiative
Interactions with Microstructures Using the Finite
Volume Time-Domain Method1

J. Liu,2,3 S. J. Zhang,4 and Y. S. Chen4

A rigorous electromagnetic model is developed to predict the radiative prop-
erties of patterned silicon wafers. For nonplanar structures with a characteris-
tic length close to the wavelength of incident radiation, Maxwell’s equations
must be used to describe the associated radiative interaction and they are
solved by the unstructured finite volume time-domain (FVTD) method. The
basic idea of the FVTD method is to cast the two Maxwell curl equations
in a conservative form, and then treat the six scalar components of the elec-
tromagnetic fields as conserved quantities via a finite volume approach. In
the die area, only one period of the structure is modeled due to its peri-
odicity in geometry. To truncate a computational domain in an open space,
the Mur boundary condition is applied to absorb outgoing waves. With the
steady state time-harmonic electromagnetic fields known, the Poynting vector
is used to calculate the radiative properties. To validate the present model, a
wave scattering problem from a cylinder is first considered and the predicted
results are found to be essentially identical to the analytical solution. After
that, radiative interactions with a nonplanar structure and a patterned wafer
consisting of the periphery and die area are investigated, and predicted reflec-
tivities and absorptivities are found to match other available solutions very
well, indicating that the present finite volume approach in the time domain
is accurate to predict radiative interaction with microstructures.
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1. INTRODUCTION

Rapid thermal processing (RTP) is a silicon wafer processing technology
used to perform thermal operations in integrated circuit fabrication such
as annealing, oxidation, or chemical vapor deposition (CVD) on a sin-
gle wafer. Due to the continuous advances in microelectronics, RTP has
been considered as a key manufacturing technology to replace batch fur-
nace processing. The main advantage of RTP is that its lower thermal
budget allows smaller devices to be made [1], which is difficult to achieve
with batch heating. Despite this advantage, the wide acceptance of RTP
in industry has been slowed due to the difficulty in achieving temperature
uniformity across a wafer. Radiative heat transfer is the dominant mode
of heat transfer in RTP systems, and the wafer radiative properties have
a first-order effect on the wafer temperature uniformity. The reflectivity
and absorptivity of the patterned silicon wafer are known to depend not
only on the wavelength and temperature but also on the microstructures of
dies which can include different materials, steps, trenches, and bumps [2].
Because the characteristic length of these structures is close to the wave-
length of incident and emitted radiation, the interaction of radiation with
the wafer must be described by the electromagnetic theory governed by
Maxwell’s equations while the traditional geometric optics (assuming that
the characteristic length is much greater than the wavelength) and Ray-
leigh’s method (assuming that the wavelength is much greater than the
characteristic length) are no longer valid.

Maxwell’s equations consist of up to six coupled partially differential
equations, and they are usually very difficult to be solved for realistic
problems. Currently, most RTP system simulations employ a simplified
description of the interaction of radiation from lamps with the wafer.
A constant emissivity of the wafer is used in some models; in others, a
stack of planar layers (thin films) on the wafer is taken into account.
Actual microstructures of wafer surfaces, however, are essentially nonpla-
nar and nonuniform and include different materials with different optical
properties as shown in Fig. 1. Therefore, rigorous two-dimensional (2D) or
three-dimensional (3D) electromagnetic modeling is essential for accurate
prediction of radiative properties of the patterned silicon wafers. So far,
there have been very few studies available which solved the multi-dimen-
sional Maxwell equations for prediction of radiative properties. Erofeev
et al. [2] were the first to model the radiative properties of 2D periodic
surfaces with multilayers. They solved Maxwell’s equations in the nor-
mal direction with a frequency-domain finite element method. Wong et al.
[3, 4] used the finite difference time-domain (FDTD) method to solve the
multi-dimensional Maxwell equations for photolithographic applications.
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Fig. 1. Schematic of a patterned wafer: (a) front side, which has the die area and wafer
periphery and (b) cutaway showing the profile of different areas.

Their results of interest were the aerial images of the structure instead of
the radiative properties of a wafer. Very recently, Liu et al. [5] employed
the FDTD method to model the interaction of radiation with the multilay-
ered nonplanar microstructures from the patterned wafer, and their study
showed that the rigorous electromagnetic model was essential to accurately
predict the radiative properties in the die area. The time-domain methods
have received more attention in the last decade, mainly because the time-
domain Maxwell equations represent a more general form than the fre-
quency-domain Helmholtz equations and their solutions are not limited to
steady time-harmonic electromagnetic fields. Also, the time-domain meth-
ods solve the equations by time marching and the corresponding solution
procedure is far less CPU- and memory-intensive compared to the
frequency-domain methods.

The objective of this study is to predict the radiative properties of
patterned silicon wafers by solving the multi-dimensional Maxwell equa-
tions using the unstructured FVTD algorithm. From our knowledge, this
study represents the first to employ the FVTD method to rigorously model
the interaction of radiation with the multilayered nonplanar microstruc-
tures from the patterned wafer. The most popular algorithm in solv-
ing Maxwell’s equations in the time domain is undoubtedly the FDTD
method developed by Yee [6]. This method applies the uncollocated elec-
tric and magnetic fields in both space and time. It was originally devel-
oped on a uniform Cartesian grid, and later was extended to handle
body-fitted grids [7, 8]. During the last three decades, the FDTD method
has been successfully applied for a wide variety of science and engineer-
ing problems, including radar cross-sections, antenna design, microwave
circuits, bio-electromagnetic analysis, power generation, and transmission,
etc. In 1989, Shankar et al. [9] developed the FVTD method, which solved
Maxwell’s equations using a cell-centered finite volume scheme with a
CFD-like Riemann solver approach. The FVTD method collocates the
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electric and magnetic fields in both space and time, rather than assign-
ing them to two interleaved spatial grids and separating them by one-
half time step as used in the FDTD method. This has the advantage
of reducing the complexity in griding, in representing material regions,
and in extracting the near-field for transformation to the far- field. Also,
due to its control volume formulation, the FVTD method can easily
handle body-fitted grids. More recently, this method was further refined
and extended to unstructured grids [10–12]. With the unstructured grid
technology, grid generation for complex geometries can be completely
automated. The major disadvantage with the FVTD method is the require-
ment for a relatively larger amount of CPU time and memory compared
to the FDTD method. However, this problem is becoming less and less
prominent due to the availability of more and more powerful comput-
ers.

In this paper, the governing equations and discretization strategy will
be first presented, then the boundary conditions associated with the die
area of a patterned wafer will be discussed. This will be followed by
an explanation of radiative properties calculated from the electromagnetic
fields. Finally, several benchmark problems involving nonplanar structures
will be investigated to check the accuracy of the developed model. It
should be stressed that even though the present study is focused on the
RTP systems, it can be directly applied to many other problems such as
spectroscopic instruments, optical property measurement, surface contam-
ination, etc., where radiative reflection from rough and patterned thin film
surfaces is a prominent phenomenon.

2. FINITE VOLUME FORMULATION OF MAXWELL’S
EQUATIONS

The time-domain Maxwell equations in their vector form can be writ-
ten as

∂Q

∂t
+∇ ×L=−M, (1)

where

Q=
[

D

B

]
(2)

contains the electric and magnetic flux density vectors, and

L=
[−H

E

]
(3)



Electromagnetic Modeling of Radiative Interactions with Microstructures 1285

contains the magnetic and electric intensity vectors, and

M=
[

J

O

]
(4)

contains the electric current density vector. The vectors D and H are
related to E and B by the constitutive relations,

D = εE,

B = µH, (5)

where ε is the permittivity and µ is the permeability of the material. The
electric current density J is related to the electric intensity E by

J=σE, (6)

where σ is the electric conductivity of the material.
In solving Eq. (1) with a finite volume scheme, we first need to dis-

cretize the computational domain into small control volumes. For geo-
metric flexibility, the control volume cells are arranged in an unstructured
manner as seen in Fig. 2. The cell types vary from triangular or quadri-
lateral for 2D problems to tetrahedral, prism, pyramid, or hexahedral for
3D problems. The cell type in each problem can be single or mixed. With
the domain discretization, we can obtain the following discretized Maxwell
equations by integrating Eq. (1) over an arbitrary control volume and also
applying the divergence theorem,

∂Q

∂t
dV +

N∑
i=1

ni ×Li dSi =−MdV, (7)

where dV is the volume of the control volume, N is the face number of
the volume cell, ni is the unit normal of the face i of the control volume,
and dSi is the area of the face i. Each control volume has a cell-averaged
Q vector, which is assumed to be the point Q vector at the cell centroid.
It is easy to see that the face tangential components of the electric and
magnetic fields determine the time variation of the volume averaged elec-
tromagnetic fields. It is well known that a simple central difference-type
method for Eq. (7) results in odd–even decoupling. Instead, CFD-type
upwind schemes based on a Riemann solver or intensity-vector splitting [9,
13] are implemented for unstructured grids. This method can be divided
into three components: reconstruction, intensity-vector computation, and
time integration, which are presented in the following paragraphs.
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Fig. 2. Cell centered control volume for 2D unstructured grids.

2.1. Reconstruction

In a cell-centered finite volume procedure, the field variables are
known in a cell-averaged sense. No indication is given as to the distribu-
tion of the solution over a control volume. In order to evaluate the inten-
sity vector at a face, the field variables are required at both sides of the
face. This task is fulfilled by reconstruction. A least-squares reconstruction
method is selected in this study. This reconstruction is capable of preserv-
ing a linear function on an arbitrary grid. Given an arbitrary field variable
q, the gradients of q are constructed by the following least-squares recon-
struction:


qx

qy

qz


= 1

∆
L




∑
n

(qn −qc)(xn −xc)∑
n

(qn −qc)(yn −yc)∑
n

(qn −qc)(zn − zc)


 , (8)

where

∆= Ixx(IyyIzz − I 2
yz)+ Ixy(2IxzIyz − IxyIzz)− I 2

xzIyy,

Ixx =
∑
n

(xn −xc)
2, Iyy =

∑
n

(yn −yc)
2,

Izz =
∑
n

(zn − zc)
2, (9)

Ixy =
∑
n

(xn −xc)(yn −yc), Iyz =
∑
n

(yn −yc)(zn − zc),

Ixz =
∑
n

(xn −xc)(zn − zc)
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and

L=

 IyyIzz − I 2

yz IxzIyz − IxyIzz IxyIyz − IxzIyy

IxzIyz − IxyIzz IxxIzz − I 2
xz IxyIxz − IxxIyz

IxyIyz − IxzIyy IxyIxz − IxzIyz IxxIyy − I 2
xy


 , (10)

where n indicates the supporting neighbor cell, c denotes the current cell,
and x, y, z are the cell centroid coordinates. It can be observed that the
matrixes L and ∆ are dependent on the geometry only. If we store Ixx ,
Iyy , etc., the reconstruction can be performed efficiently with one loop
over the neighboring cells.

2.2. Intensity-Vector Computation

After the cell-wise reconstruction, the field variables at the left and
right side of any face can be determined based on a simple Taylor expan-
sion, i. e.,

QfL =QL +∇QL · (rf − rL), (11)

QfR =QR +∇QR · (rf − rR), (12)

where rf is the position vector of the face center, and rL and rR are the
position vectors of the left and right cell centroids. Then the intensity vec-
tor at the face is computed based on a Riemann solver [9]. Given the
left and right field variables, the magnetic and electric intensity vectors as
defined in Eq. (3) at the face can be expressed as

Lf =




−(µc)RHR+(µc)LHL−n×
(
ER−EL

)
(µc)R+(µc)L

(µc)RER+(µc)LEL+n×
(
HR−HL

)
(µc)R+(µc)L


 , (13)

where c is the wave speed and equal to 1/
√

εµ.

2.3. Time Integration

Once the intensity vector is determined at each face of a control vol-
ume, a time integration scheme is then needed for Eq. (7) to advance
the unknowns in time. In this study, the following fourth-order, four-stage
explicit Runge–Kutta scheme is used to integrate Eq. (7) in the (n+ 1)-th
time step with a time step ∆t ,

Qn+1 =Qn + ∆t

6
(f n +2 f ∗ +2 f ∗∗ +2 f ∗∗∗), (14)
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Si Substrate x

y

Fig. 3. An example of nonplanar multilayered die structure.

where

f=M− 1
dV

N∑
i=1

ni ×Li dSi (15)

and

Q∗ = Qn + ∆t

2
f n, f ∗ =f(tn+1/2,Q∗),

Q∗∗ = Qn + ∆t

2
f ∗, f ∗∗ =f(tn+1/2,Q∗∗), (16)

Q∗∗∗ = Qn +∆tf ∗∗, f ∗∗∗ =f(tn+1,Q∗∗∗).

3. NUMERICAL TREATMENT OF BOUNDARY CONDITIONS

For the application of the FVTD method, the computational domain
must be confined by some means due to computer memory and CPU lim-
itations. It is known that the die area of a patterned wafer usually shows
a periodic geometric profile. So only a single period of the structure in the
x-direction needs to be modeled in the die area as shown in Fig. 3. In the
y-direction, the die area is exposed to free space and a considerably thick
substrate (compared to the structure), two artificial boundaries must be
introduced to truncate the free space and substrate, and they are usually
called the absorbing boundary conditions. Ideally, the absorbing bound-
aries should not affect the propagation of electromagnetic waves, i. e., they
should annihilate the outward-going waves without any reflection. A typ-
ical computational domain containing periodic and absorbing boundary
conditions is shown in Fig. 4, and it is excited at the top by a monochro-
matic plane wave.

For a periodic structure, the amplitudes of the field components are
equal at the left and right boundaries (Fig. 4). If the phase differences of
the field components between the two sides are also equal to 2π ·m (where
m is any integer), the field components are periodic functions along the
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Periodic boundary condition

One period of the patterned wafer 

Absorbing boundary condition 

Absorbing boundary condition x

y Incident radiation wave 

Fig. 4. Computational domain and boundary conditions.

x-direction and the boundary conditions can be easily implemented at the
left and right sides. It is noted that the periodic boundary condition is not
automatically satisfied in a periodic structure. In some RTP systems, the
incident radiation mainly comes from the normal direction. For this con-
dition, the phases of the field components between the two sides are equal,
and the periodic condition is applied to each field component. For some
RTP systems, the effect of oblique incidence may have to be taken into
account. For such a situation, the periodic condition is applied only if the
incident angle θ is

θ = sin−1
(

mλ

d

)
, (17)

where d is the horizontal period of a periodic structure and λ is the inci-
dent wavelength. The numerical treatment of general oblique incidence is
possible for a periodic structure; however, it is very tedious. Implementa-
tion of general oblique incidence will be one of our studies in the future.

For an open radiation problem, one of the most commonly used
absorbing boundary conditions is the Mur boundary condition [14] and
it is applied in this study. The Mur boundary condition is based on
the one-way approximation of the wave equation initially exhibited for
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acoustic waves by Engquist and Majda [15]. This condition is very easy to
implement, and it absorbs a wave without reflection if the wave is planar
and propagates perpendicularly to the boundary. More accurate absorbing
boundary conditions such as the perfectly matched layer (PML) [16–18]
technique are available, and their implementation in the FVTD method
will be also one of the future studies.

4. PREDICTION OF RADIATIVE PROPERTIES

The FVTD method calculates the transient electromagnetic fields
throughout the computational domain under the excitation of a mono-
chromatic harmonic field. However, the real results of interest in this study
are the radiative properties and they are associated with the electromag-
netic fields through the wave intensity. The intensity of the harmonic wave
is defined as a mean value of the Poynting vector and expressed as

I(x, y)= 1
T ∗

∫ T ∗

0
|E×H|dt, (18)

where T ∗ = 2π/ω is the time period of the wave. Then the reflectivity is
defined as a ratio of the reflected and incident intensities, and the trans-
missivity is defined as a ratio of the transmitted and incident intensities.
For the transverse electric (TE) polarization, the reflectivity Re is calcu-
lated at an arbitrary constant y plane above the die structure and has the
following form:

Re =

∫ d

0

∫ T ∗

0
|E×H|dt dx

∫ d

0

∫ T ∗

0
|Ein ×Hin|dt dx

, (19)

where the incident electric and magnetic fields Ein and Hin are provided
by the user and E and H are calculated by the FVTD method discussed
previously. For an unpolarized wave, its reflectivity is taken to be an arith-
metic average of the reflectivities from TE and transverse magnetic (TM)
polarizations, that is,

R =0.5(Re +Rm). (20)

With R given, the corresponding transmissivity T becomes

T =1−R. (21)
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In some RTP simulations, the apparent radiative properties are the
quantities of interest and they take into account reflection from the wafer
backside. To predict these properties, we first calculate the reflectivity Rb

of the wafer backside using the thin film theory [19] since we assume the
backside film structure to be planar. If the absorption coefficient of the
substrate is α and the wafer thickness is Hw, then the apparent absorp-
tivity of the wafer (or its emissivity as it follows from the equilibrium
condition) is

A0 = (1−R)[1− exp(−αHw)][1+Rb exp(−αHw)] (22)

This expression is often used to calculate the heat absorbed by the wafer.

5. RESULTS AND DISCUSSION

Based on the above numerical approach, a computer code has been
developed which is capable of simulating propagation of 2D and 3D elec-
tromagnetic waves in lossy, anisotropic, and inhomogeneous media with
irregular geometries by using an unstructured FVTD method. To examine
the performance of the present code, several problems containing differ-
ent geometries are investigated and they are all assumed to be excited
by a sinusoidal plane wave. So far, the FVTD method has been mainly
applied for electromagnetic scattering problems. So we first consider wave
scattering by a conducting cylinder. After that, we investigate electromag-
netic wave interactions with several nonplanar structures with character-
istic sizes close to the wavelength of radiation. For each problem, the
grid resolution is usually more than 20 points per wavelength in order to
obtain grid independent results. In this study, all computations were con-
ducted on the 800 MHz Linux PC machine. For a typical simulation, the
steady-state harmonic solution is reached after 10 wave cycles. The corre-
sponding CPU time is dependent on the problem size, and it is usually not
more than an hour.

5.1. Wave Scattering by a Conducting Cylinder

Consider a TE plane wave incident on a perfect conducting cylinder.
This problem is selected because its analytical solution exists. For a perfect
electrical conductor, the tangential components of the electric field must
be zero on the conductor surface. Figure 5a shows the unstructured grid
used in the calculation. The incident TE plane wave has a wave number of
1 m−1 with a magnetic field intensity amplitude of 3.0 × 108 A·m−1. The
radius of the cylinder is 1.0 m. The open boundary is located about two
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wavelengths away from the cylinder. In the computation, a scattered wave
formulation was employed instead of the total wave formulation. The time
step was chosen to be 1.0×10−10 s. Figure 5b demonstrates the nondimen-
sional electric current profile along the cylinder surface. The present results
are found to be essentially identical to the exact solution [20], indicating
that our developed Maxwell’s equation solver is very accurate.

5.2. Radiative Interaction with a Nonplanar Structure

With the validation of the present code in electromagnetic wave scat-
tering problems, we shift our attention to radiative interaction with micro-
structures. The interaction of a radiation wave with planar structures is
well-known, and the corresponding reflectivity and transmissivity can be
easily calculated from a thin film theory [19]. Electromagnetic wave inter-
action with a nonplanar structure with a characteristic length close to the
wavelength of radiation is much more complicated than that with a planar
structure. As a result, it is impossible to use the exact method to predict
the associated radiative properties. So far there have been very few studies
available which involve solving Maxwell’s equations to calculate the reflec-
tion, transmission, and absorption coefficients. Erofeev et al. [2] were the
first to rigorously model radiative properties of nonplanar structures for
comprehensive RTP simulation by solving Maxwell’s equation using the
frequency-domain finite element method. One of their considered prob-
lems is a periodic structure consisting of trenches and juts shown in Fig. 6,
and it will be investigated by the present code for the validation study. The
structure is assumed to be illuminated at a normal direction with a wave-
length at 1.0 µm (maximum of radiation spectrum at the filament temper-
ature 3000 K in a RTP system) and it is maintained at a temperature of
873 K. The period of the structure is 2.0 µm, and the trench depth can
be changed from 0 to 1.0 µm. Before Maxwell’s equations are solved, the
material parameters are calculated from the complex refractive index. The
complex refractive index of silicon depends on wavelength, temperature,
and impurity concentration and it is taken from Refs. 21 and 22.

Table I shows the calculated reflectivities at different trench depths
based on a domain 2.0 µm × 4.0 µm which is discretized into 80,000
quadrilateral volume cells. The result of interest is the reflectivity of a non-
polarized wave rather than that for a specific polarization. The reflectivi-
ties from Erofeev et al. [2] in the table are directly hand-picked from the
paper, and they may be subject to small errors. So, the results are consid-
ered to be meaningful only to the third decimal place. Previously, the pres-
ent authors applied the FDTD method [5] to investigate the same problem
and these results are also listed in Table I for comparison. As the trench
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Fig. 5. Wave scattering by a conducting cylinder: (a) unstructured computational
grid and (b) electric current distribution along the cylinder surface.
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1µm

h
Si AirAir

1µm

Si substrate 

Fig. 6. Nonplanar periodic struc-
ture with varying trench depth.

Table I. Reflectivities of a Nonplanar Structure with Varying Trench
Depth

H(µm)

Solution 0.0 0.25 0.5 0.75 1.0

Present 0.337 0.289 0.297 0.282 0.301
Erofeev et al. (1995) [2] 0.337 0.290 0.286 0.270 0.298
FDTD 0.335 0.297 0.280 0.277 0.301

depth is increased from 0 to 1.0 µm, the calculated reflectivity is seen to
keep changing. At h = 0.75µm, the reflectivity drops over 15% in com-
parison with that at h = 0µm. Compared to the studies from Erofeev et
al. and the FDTD method, the present prediction basically shows good
agreement for each case. The maximum reflectivity difference among three
different studies is around 5%.

5.3. Radiative Interaction with a Patterned Wafer

With the validation of the present code in a nonplanar structure, a
complete patterned wafer shown in Fig. 7 will be investigated to demon-
strate how the radiative properties change across the wafer. The front side
of the wafer consists of the wafer periphery and die area. The periphery
area can be considered as a planar structure, and it is a 50 nm layer of
Si3N4 deposited on the silicon substrate. The die area has a periodic struc-
ture similar to those in Fig. 6 but the silicon surface is covered with a
50 nm Si3N4 layer. The trench depth can be changed from 0 to 1.0 µm.
The substrate thickness equals 0.7 mm, and the wafer temperature equals
873 K. The wavelength of incident radiation is set to be 1.0 µm. In the
present computation, the complex reflective index of Si3N4 is taken from
Ref. 21. The sizes of the computational domain for the periphery and
die areas are chosen to be the same, and they are 2.0 µm ×4.0µm. The
total numbers of quadrilateral cells used for the two domains are also the
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1 mm

h
Si AirAir

1mm

Si substrate 

Wafer periphery 

Si3N4

Die region

Fig. 7. Patterned wafer containing the periphery
and die region.

same, and they are equal to 800,000. Like the previous problem, this prob-
lem was also considered previously by the present author with the FDTD
method [5], and the corresponding solution will be used to examine the
accuracy of the present results from the FVTD method.

Table II shows the apparent absorptivities from the periphery and die
region with varying trench depth at normal incidence. For comparison,
the apparent absorptivities from the bare silicon are also provided. In the
last two decades, prediction of wafer radiative properties has experienced
three developmental stages. In the first stage, an entire wafer is treated
simply as bare silicon. In the second stage, both the periphery and die
region are treated as thin film structures. The third stage involves rig-
orous electromagnetic modeling as described in this study. As the stage
number changes from one to three, the accuracy of predicted radiative
properties across a wafer should be increased because the physical model
becomes more realistic. In the wafer periphery, the present results (third
column) are almost identical to the results from the thin film theory (not
listed) because the considered structure is of planar geometry. However,
the bare silicon approach (second column) underestimates the absorptiv-
ities by about 11% in the wafer periphery. In the die area, the thin film
approach first calculates the radiative properties of each component, then
these properties are averaged using the fractional area of the components
as weighting factors. The die area shown in Fig. 7 consists of two com-
ponents, silicon substrate and substrate coated with Si3N4, and the cor-
responding thin film results are listed in the fourth column of the table.
Obviously, the thin film approach cannot consider the effect of varying
trench depth. Compared to the results by directly solving Maxwell’s equa-
tions, the thin film approach underestimates the absorptivities by up to
6% with h = 0.5µm in the die area. This level of difference in radiative
properties will have great implication on the wafer temperature distribu-
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Table II. Apparent Absorptivities of a Patterned Wafer Containing the Periphery and Die
Region with Varying Trench Depth

Structure

Die region with varying trench depth h (µm)
(thin film)

Bare Wafer Die region
Solution silicon periphery 0.0 0.25 0.50 0.75 1.0

Present 0.6653 0.7517 0.7085 0.7079 0.7316 0.7558 0.7480 0.7448
FDTD 0.6653 0.7517 0.7085 0.7071 0.7233 0.7686 0.7379 0.7394

tion. Compared to the results from the FDTD method, the present predic-
tion shows very good agreement for each case. The maximum absorptivity
difference between two different methods is within 2%.

6. CONCLUSIONS

Since real microstructures of dies are nonplanar and have a character-
istic length close to the wavelength of incident radiation, a rigorous elec-
tromagnetic model has been developed to solve Maxwell’s equations using
the FVTD method and predict the radiative properties of patterned sili-
con wafers. To validate the present model, a wave scattering problem is
considered at first and the predicted results are found to be essentially
identical to the analytical solution. After that, radiative interactions with
a nonplanar structure and a patterned wafer consisting of the periphery
and die area are investigated, and predicted reflectivities and absorptivities
are found to match other available solutions very well, indicating that the
present finite volume approach in the time domain is accurate to predict
radiative interaction with microstructures.
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